首页 | 本学科首页   官方微博 | 高级检索  
     

高边坡时序位移滚动预测的SVM-Elman模型
引用本文:刘冲,沈振中,甘磊,旦增赤列,严中奇. 高边坡时序位移滚动预测的SVM-Elman模型[J]. 长江科学院院报, 2019, 36(5): 62-68. DOI: 10.11988/ckyyb.20171018
作者姓名:刘冲  沈振中  甘磊  旦增赤列  严中奇
作者单位:河海大学 水文水资源与水利工程科学国家重点实验室,南京,210098;河海大学 水文水资源与水利工程科学国家重点实验室,南京 210098;河海大学 水利水电学院,南京 210098;浙江省桐乡市水利局,浙江 桐乡,314500
基金项目:国家自然科学基金项目(51179062);2016年度江苏省普通高校学术学位研究生科研创新计划项目(KYZZ16_0284);江苏省自然科学基金青年基金项目(BK2012410);中央高校基本科研业务费项目(2014B11914)
摘    要:基于支持向量机(SVM)和Elman神经网络,提出一种新的高边坡位移时序预测模型——SVM-Elman神经网络预测模型。在对实测数据学习的过程中,寻找最佳学习样本数和最佳测试样本数,利用经粒子群算法优化的SVM模型对边坡位移时间序列进行实时滚动预测;并运用Elman神经网络改进SVM的预测结果,得到SVM-Elman模型预测值,通过比较不同隐含层数的Elman神经网络对预测结果的影响,选择最佳隐含层数的SVM-Elman模型,实现对预测结果的改进。将SVM-Elman模型应用于某混凝土面板堆石坝左岸强卸荷岩体高边坡位移预测分析中,并与传统的SVM预测结果进行比较分析。结果表明,SVM-Elman模型在预测精度上有明显提高,预测结果科学可靠,在岩体高边坡时序位移预测中具有一定的工程应用价值。

关 键 词:边坡变形预测  支持向量机  Elman神经网络  SVM-Elman模型  粒子群优化算法  隐含层数
收稿时间:2017-09-04
修稿时间:2017-09-27

A Time Series Prediction Model of High Slope Displacement Based on Support Vector Machine and Elman Neural Network
LIU Chong,SHEN Zhen-zhong,GAN Lei,DANZENG Chi-lie,YAN Zhong-qi. A Time Series Prediction Model of High Slope Displacement Based on Support Vector Machine and Elman Neural Network[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(5): 62-68. DOI: 10.11988/ckyyb.20171018
Authors:LIU Chong  SHEN Zhen-zhong  GAN Lei  DANZENG Chi-lie  YAN Zhong-qi
Affiliation:1.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;2.College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;3. Tongxiang Water Conservancy Bureau, Tongxiang 314500, China
Abstract:A new displacement time series predicting model was proposed by integrating support vector machine (SVM) and Elman neural network, named as SVM-Elman model. In the process of measured displacement data learning, by searching the best historical step and the best prediction step, SVM model was optimized by particle swarm algorithm to dynamically forecast the trend of development. In the meantime, Elman neural network has the ability of dynamically reflecting the development trend of the absolute error of SVM model prediction. By comparing the influence of different hidden layers of Elman neural network on the prediction results, the optimal number of hidden layer was determined for SVM-Elman model and hence modifying the predicted data of SVM in real time. The proposed SVM-Elman model was applied to the strong unloading high slope on the left bank of a concrete face rockfill dam, and the prediction result was compared with that of conventional SVM. Results demonstrate that the proposed model has superior accuracy and real application value in predicting the deformations of high slope.
Keywords:prediction of high slope displacement   support vector machine   Elman neural network   SVM-Elman model   particle swarm optimization algorithm   number of hidden layer  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《长江科学院院报》浏览原始摘要信息
点击此处可从《长江科学院院报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号