首页 | 本学科首页   官方微博 | 高级检索  
     


The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites
Authors:T S Srivatsan  R Annigeri
Affiliation:(1) the Department of Mechanical Engineering, The University of Akron, 44325-3903 Akron, OH;(2) Department of Engineering Science and Mechanics, Pennsylvania State University, 16802 University Park, PA
Abstract:In this article, the quasi-static and cyclic fatigue fracture behavior of aluminum alloy 2014 discontinuously reinforced with fine particulates of aluminum oxide are presented and discussed. The discontinuous particulate-reinforced 2014 aluminum alloy was cyclically deformed under fully reversed, tension-compression loading over a range of strain amplitudes, well within the plastic domain of the engineering stress-strain curve, resulting in cyclic fatigue lives of less than 104 cycles. The influence of both ambient and elevated temperatures on cyclic stress and cyclic stress-strain response is highlighted. The underlying mechanisms governing the fracture mode during quasi-static and cyclic fatigue are discussed and rationalized in light of the concurrent and mutually interactive influences of intrinsic composite microstructural features, deformation characteristics of the metal matrix and reinforcement particulate, cyclic strain amplitude and resultant fatigue life, and test temperature. This article is based on a presentation made in the Symposium “Mechanisms and Mechanics of Composites Fracture” held October 11–15, 1998, at the TMS Fall Meeting in Rosemont, Illinois, under the auspices of the TMS-SMD/ASM-MSCTS Composite Materials Committee.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号