首页 | 本学科首页   官方微博 | 高级检索  
     

步进MPCA及其在间歇过程监控中的应用
引用本文:谢磊,何宁,王树青. 步进MPCA及其在间歇过程监控中的应用[J]. 高校化学工程学报, 2004, 18(5): 643-647
作者姓名:谢磊  何宁  王树青
作者单位:工业控制技术国家重点实验室,浙江大学先进控制技术研究所,浙江,杭州,310027;工业控制技术国家重点实验室,浙江大学先进控制技术研究所,浙江,杭州,310027;工业控制技术国家重点实验室,浙江大学先进控制技术研究所,浙江,杭州,310027
基金项目:863资助项目(2001AA413110)。
摘    要:
针对多向主元分析法(MPCA)在间歇过程监控过程中需要预测过程未来输出的困难,提出了一种新的步进多向主元分析方法。该方法通过建立一系列的PCA模型,避免了对预估过程变量未来输出的需要,通过引入遗忘因子能够自然地处理多阶段间歇过程的情况。对于多阶段链霉素发酵过程的监控表明,相对于普通MPCA,步进MPCA能够更精确地对过程故障行为进行描述。

关 键 词:多向主元分析(MPCA)  步进多向主元分析  间歇过程监控  链霉素发酵
文章编号:1003-9015(2004)05-0643-05
修稿时间:2002-12-09

Step-by-Step Adaptive MPCA Applied to an Industrial Batch Process
XIE Lei,HE Ning,WANG Shu-qing. Step-by-Step Adaptive MPCA Applied to an Industrial Batch Process[J]. Journal of Chemical Engineering of Chinese Universities, 2004, 18(5): 643-647
Authors:XIE Lei  HE Ning  WANG Shu-qing
Abstract:
Multi-way principal component analysis (MPCA) has been successfully applied to the monitoring of batch and semi-batch process in most chemical industry. A new approach using the process variable trajectories to monitoring batch process was proposed. It overcomes the need of estimating or filling in the unknown part of the process variable trajectory deviations from the current time until the end. The approach is based on a multi-way PCA method that processes the data in a sequential and adaptive manner. The adaptive rate is easily controlled through a parameter that controls the weight of past data in a summation manner. This algorithm was evaluated with industrial fermentation process data and was compared with the traditional MPCA. The method has significant benefit especially in monitoring multi-stage batch process where the latent vector structure can change at several points during the batch.
Keywords:multi-way PCA(MPCA)  step-by-step MPCA  batch monitoring  streptomycin fermentation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号