A thermal‐flywheel approach to distributed temperature control in microchannel reactors |
| |
Authors: | Richard C. Pattison Michael Baldea |
| |
Affiliation: | Dept. of Chemical Engineering, The University of Texas at Austin, , Austin, TX, 78712 |
| |
Abstract: | Microchannel reactors are a promising route for monetizing distributed natural gas resources. However, intensification and miniaturization represent a significant challenge for reactor control. Focusing on autothermal methane‐steam reforming reactors, a novel microchannel reactor temperature control strategy based on confining a layer of phase‐change material (PCM) between the reactor plates is introduced. Melting‐solidification cycles, which occur with latent heat exchange at constant temperature, allow the PCM layer to act as an energy storage buffer—a “thermal flywheel”—constituting a distributed controller that mitigates temperature excursions caused by fluctuations in feedstock quality. A novel stochastic optimization algorithm for selecting the PCM layer thickness (i.e., distributed controller “tuning”) is introduced. Furthermore, a hierarchical control structure, whereby the PCM layer is complemented by a supervisory controller that addresses persistent disturbances, is proposed. The proposed concepts are illustrated in a comprehensive case study using a detailed two‐dimensional reactor model. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2051–2061, 2013 |
| |
Keywords: | reactor analysis optimization mathematical modeling process control |
|
|