A novel attribute weighting algorithm for clustering high-dimensional categorical data |
| |
Authors: | Liang Bai Jiye Liang Chuangyin Dang Fuyuan Cao[Author vitae] |
| |
Affiliation: | aKey Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan, 030006 Shanxi, China;bDepartment of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong |
| |
Abstract: | Due to data sparseness and attribute redundancy in high-dimensional data, clusters of objects often exist in subspaces rather than in the entire space. To effectively address this issue, this paper presents a new optimization algorithm for clustering high-dimensional categorical data, which is an extension of the k-modes clustering algorithm. In the proposed algorithm, a novel weighting technique for categorical data is developed to calculate two weights for each attribute (or dimension) in each cluster and use the weight values to identify the subsets of important attributes that categorize different clusters. The convergence of the algorithm under an optimization framework is proved. The performance and scalability of the algorithm is evaluated experimentally on both synthetic and real data sets. The experimental studies show that the proposed algorithm is effective in clustering categorical data sets and also scalable to large data sets owning to its linear time complexity with respect to the number of data objects, attributes or clusters. |
| |
Keywords: | Cluster analysis Optimization algorithm High-dimensional categorical data Subspace clustering Attribute weighting |
本文献已被 ScienceDirect 等数据库收录! |
|