首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental evaluation of velocity and power estimation forultrasound blood flow imaging, by means of a two-dimensionalautocorrelation approach
Authors:Loupas  T Peterson  RB Gill  RW
Affiliation:Div. of Radiophys., CSIRO, Chatswood, NSW;
Abstract:This paper evaluates experimentally the performance of a novel axial velocity estimator, the 2D autocorrelator, and its Doppler power estimation counterpart, the 2D zero-lag autocorrelator, in the context of ultrasound color flow mapping. The evaluation also encompasses the well-established 1D autocorrelation technique for velocity estimation and its corresponding power estimator (1D zero-lag autocorrelator), to allow performance comparisons under identical conditions. Clutter-suppressed in vitro data sets from a steady-flow system are used to document the effect of the range gate and ensemble length, noise level and angle of insonation on the precision of the velocity estimates. The same data sets are used to examine issues related to the estimation of the Doppler signal's power. The first-order statistics of power estimates from regions corresponding to flow and noise are determined experimentally and the ability of power-based thresholding to separate flow signals from noise is characterized by means of ROC analysis. In summary, the results of the in vitro evaluation show that the proposed 2D-autocorrelation form of processing is consistently better than the corresponding 1D-autocorrelation techniques, in terms of both velocity and power estimation. Therefore, given their relatively modest implementation requirements, the 2D-autocorrelation algorithms for velocity and power estimation appear to represent a superior, yet realistic, alternative to conventional Doppler processing for color flow mapping
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号