Relative dissociation energies of protonated peptides by electrospray ionization/surface-induced dissociation |
| |
Authors: | Lim H Schultz D G Yu C Hanley L |
| |
Affiliation: | Department of Chemistry, m/c 111, University of Illinois at Chicago, Chicago, Illinois 60607-7061. |
| |
Abstract: | Relative dissociation energies (RDEs) are obtained for the major fragment ions produced by electrospray ionization/surface-induced dissociation of singly protonated triglycine, tetraglycine, leucine enkephalin, and leucine enkephalin arginine. A previously described data analysis method (Lim, H.; et al. J. Phys. Chem. B 1998, 102, 4753) is employed to analyze the energy-resolved mass spectra by subtracting out the distribution of energy transferred to the surface, integrating over the distribution of the incident ion energy, and taking into account the precursor ion initial internal energy and kinetic energy distributions. These variables are optimized by anchoring the RDE for the lowest energy fragment of a given precursor ion to its literature values and then using these optimized parameters to obtain the other RDEs. The RDEs of the four major fragments of triglycine vary from 2.4 eV for the b(2) fragment ion to 6.0 eV for the a(2) ion. The RDEs of the four major fragments of tetraglycine vary from 3.2 eV for the y(2) ion to 5.7 eV for the a(2) ion. The leucine enkephalin RDEs range from 1.1 eV for the b(4) ion to 2.1 eV for the b(2) ion. The leucine enkephalin arginine RDEs all lay between 2.5 and 3.5 eV. The overall trend of fragmentation order for all peptides is (y(n), b(n)) < a(n) and is consistent with the results from other experiments. The peptide RDEs presented here are only as accurate as the literature values to which they are anchored. Determination of absolute dissociation energies from SID data will require further refinement of the data analysis method. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|