首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of evaporation heat transfer coefficient and pressure drop of refrigerant mixtures
Authors:D Jung  R Radermacher
Abstract:A study on the prediction of heat transfer coefficient (HTC) and pressure drop of refrigerant mixtures is reported. HTCs and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis. Results indicate that nucleate boiling is suppressed at qualities greater than 20.0% for all mixtures and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8.0–10.0% increase in HTCs. Some mixtures with large volatility difference exhibit as much as 55.0% reduction compared with R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32.0%) and reduced mass flow rates (23.0%). Other mixtures with moderate volatility difference exhibit 20.0–30.0% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall HTC of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10.0% in transport properties causes a change of less than 6% in heat transfer prediction.
Keywords:heat transfer  refrigerant  R12  R22  substitute  mixture  R32  R152a  heat transfer coefficient  calculation  measurementMots-clé  : transfert de chaleur  frigorigè  ne  R12  R32  substitut    lange  R32  R152a  coefficient de transfert de chaleur  calcul  mesure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号