首页 | 本学科首页   官方微博 | 高级检索  
     

基于广义回归网络的动态权重回归型神经网络集成方法研究
引用本文:沈掌泉,孔繁胜. 基于广义回归网络的动态权重回归型神经网络集成方法研究[J]. 计算机应用研究, 2005, 22(12): 41-43,72
作者姓名:沈掌泉  孔繁胜
作者单位:浙江大学,农业遥感与信息技术应用研究所,浙江,杭州,310029;浙江大学,计算机科学与技术学院,浙江,杭州,310027;浙江大学,计算机科学与技术学院,浙江,杭州,310027
基金项目:国家自然科学基金资助项目(40201021)
摘    要:神经网络集成技术能有效地提高神经网络的预测精度和泛化能力,已成为机器学习和神经计算领域的一个研究热点。针对回归分析问题提出了一种动态确定结果合成权重的神经网络集成构造方法,在训练出个体神经网络之后,根据各个体网络在输入空间上对训练样本的预测误差,应用广义回归网络来动态地确定各个体网络在特定输入空间上的权重。实验结果表明,与传统的简单平均和加权平均方法相比,本集成方法能取得更好的预测精度。

关 键 词:神经网络集成  BP网络  动态权重  广义回归神经网络
文章编号:1001-3695(2005)12-0041-03
收稿时间:2004-12-07
修稿时间:2004-12-072005-01-28

Dynamically Weighted Ensemble Neural Networks with Generalized Regression Neural Network for Solving Regression Problems
SHEN Zhang-quan,KONG Fan-sheng. Dynamically Weighted Ensemble Neural Networks with Generalized Regression Neural Network for Solving Regression Problems[J]. Application Research of Computers, 2005, 22(12): 41-43,72
Authors:SHEN Zhang-quan  KONG Fan-sheng
Abstract:Combining the outputs of several neural networks into an aggregate output often gives improved accuracy over any individual output. This paper presents an ensemble method for regression that has advantages over weighted average combining techniques. Generally, the output of an ensemble is a weighted sum which are weights fixed. The ensembles are weighted dynamically, the weights dynamically determined from the predicted accuracies of the trained networks with training dataset, the more accurate a network seems to be of its prediction, the higher the weight. This is implemented by generalized regression neural network. Empirical results show that this method improved on prediction accuracy.
Keywords:Neural Network Ensemble   BP Neural Network   Dynamic Weight   Generalized Regression Neural Network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号