首页 | 本学科首页   官方微博 | 高级检索  
     


INFLUENCE OF INTERNAL HYDROGEN ON THE HYDROGEN EMBRITTLEMENT OF AUSTENITIC STAINLESS STEEL
Authors:Y Tan  DH Zhouand J Feng
Affiliation:Y Tan,D.H Zhouand J. Feng (Institute of Structural Mechanics,Chengdu,China)
Abstract:The HE (hydrogen embrittlement) behavior of two kinds of austenitic stee Cr21Ni6Mn9 and 1Cr18Ni9Ti is reprted in this paper. The factors (temperc-ture/strain rate/stress concentration coefficient and purity of hydrogen) are restricted to the severe conditions under which HE is easy to occur. The concentmtion of in-ternal hydrogen in samples is changed by varying the time during which samples are placed in 24 MPa hydrogen at 473 K Then the tensile properties of the samples are tested. The results indicate that the degree of the hydrogen-induced plastic loss (L)of Cr21Ni6Mn9 is different with the internal hydrogen(CH). Howeven even when CH is as high as 70 PPm L is 15% and the fracture may be explained as a larpe amount of internal hydrogen hinders the cross-slip of dislocations when the steel is deforming.For the metastable steel 1Cr18Ni9Ti the hydrogen-induced plastic loss is severer than that of Cr21Ni6Mn9. When CH is 40 PPm its L is as high as 42%. The mechanism may be explained as a larpe amount of hyderpen decreases the stacking fault enerpy and brittle ε-phase is produed in the high CH areas.
Keywords:austenitic stainless steel  internal hydrogen  hydrogen embrittlement  hydrogen-induced ductility loss
本文献已被 CNKI 等数据库收录!
点击此处可从《金属学报(英文版)》浏览原始摘要信息
点击此处可从《金属学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号