首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊隶属度的加权广义不定核判别分析
引用本文:杨静,范丽亚. 基于模糊隶属度的加权广义不定核判别分析[J]. 山东大学学报(工学版), 2012, 42(3): 31-38
作者姓名:杨静  范丽亚
作者单位:聊城大学数学科学学院, 山东 聊城 252059
基金项目:国家自然科学基金资助项目(10871226);山东省自然科学基金资助项目(ZR2009AL006);山东省中青年科学家科研奖励基金资助项目(BS2010SF004)
摘    要:
对线性不可分的问题,已有许多基于正定核的降维方法,Fisher判别分析法是其中常用的方法。本研究对此类方法进行了改进和推广,首先将正定核推广到不定核,然后提出了基于模糊隶属度的不定核判别分析,最后结合权函数提出了加权广义不定核判别分析。实验结果表明,所提算法不仅有很好的分类效果,而且权函数的选择对分类结果有比较明显的影响。

关 键 词:不定核  模糊判别分析  模糊隶属度  权函数  错分率
收稿时间:2011-09-04

Weighted generalized indefinite kernel discriminant analysis based on fuzzy memberships
YANG Jing,FAN Li-ya. Weighted generalized indefinite kernel discriminant analysis based on fuzzy memberships[J]. Journal of Shandong University of Technology, 2012, 42(3): 31-38
Authors:YANG Jing  FAN Li-ya
Affiliation:School of Mathematics Sciences, Liaocheng University, Liaocheng 252059, China
Abstract:
For linear non-separated problems,many dimensionality reduction methods which are based on the definite kernel were proposed.The Fisher discriminant analysis method,one of the commonly used methods,was improved and extended.The definite kernel was extended to the indefinite kernel,and then indefinite kernel discriminant analysis based on fuzzy memberships was proposed.In addition,weighted generalized IKDA algorithms were achieved according to the weighting function.Experimental results showed that the proposed methods could achieve good classification results,and the choice of the weighting function could have a significant effect on the classification results.
Keywords:indefinite kernel  fuzzy discriminant analysis  fuzzy membership  weighting function  misclassification rate
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号