首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo acceleration of ultrasonic tissue heating by microbubble agent
Authors:Umemura Shin-Ichiro  Kawabata Ken-Ichi  Sasaki Kazuaki
Affiliation:Hitachi Central Research Laboratory, Kokubunji, Tokyo 185-8601, Japan. sumemura@crl.hitachi.co.jp
Abstract:The ultrasonic power absorbed by a microbubble in its continuous wave response is estimated through numerically solving a version of the Rayleigh-Plesset equation. At an ultrasonic frequency of 3 MHz, a resonant microbubble, approximately 1.1 microm in radius, showed an absorption cross section of about 0.005 mm2 in its low power response. This estimation predicts that the tissue ultrasonic absorption will be doubled when such microbubbles are delivered to the tissue at a concentration of about eight bubbles/mm3 in tissue. An exteriorized murine kidney was exposed to focused ultrasound at 3.2 MHz in degassed saline, and the tissue temperature change was measured. With an intravenous bolus administration of a microbubble agent, the ultrasonically induced temperature elevation was multiplied by up to five times. The enhancement in temperature elevation gradually decreased as the microbubble agent was eliminated from the body. The experimental results agreed with the prediction in the order of magnitude. This effect may have a potential use to enhance the throughput as well as the selectivity of focused ultrasound treatment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号