首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络和多模型的非线性自适应PID控制及应用
引用本文:刘玉平,翟廉飞,柴天佑. 基于神经网络和多模型的非线性自适应PID控制及应用[J]. 化工学报, 2008, 59(7): 1671-1676
作者姓名:刘玉平  翟廉飞  柴天佑
作者单位:东北大学自动化研究中心,辽宁,沈阳,110004;东北大学自动化研究中心,辽宁,沈阳,110004;东北大学自动化研究中心,辽宁,沈阳,110004
基金项目:国家高技术研究发展计划(863计划) , 国家自然科学基金
摘    要:针对一类未知的单输入单输出离散非线性系统,提出了基于神经网络和多模型的非线性自适应PID控制方法。该方法由线性自适应PID控制器、神经网络非线性自适应PID控制器以及切换机构组成。采用线性自适应PID控制器可保证闭环系统所有信号有界;采用神经网络非线性自适应PID控制器可改善系统性能;通过引入合理的切换机制,能够在保证闭环系统稳定的同时,提高系统性能。理论分析表明,该方法能够保证闭环系统所有信号有界,如果适当地选择神经网络的结构和参数,系统的跟踪误差将收敛于任意给定的紧集。将所提出的方法应用于连续搅拌反应釜,仿真结果验证了所提出方法的有效性。由于该方法基于增量式数字PID控制器,在工业过程中有着广阔的应用前景。

关 键 词:PID控制  自适应控制  多模型  神经网络  连续搅拌反应釜
收稿时间:2008-04-15
修稿时间:2008-4-20 

Nonlinear adaptive PID control using neural networks and multiple models and its application
LIU Yuping,ZHAI Lianfei,CHAI Tianyou. Nonlinear adaptive PID control using neural networks and multiple models and its application[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7): 1671-1676
Authors:LIU Yuping  ZHAI Lianfei  CHAI Tianyou
Abstract:For a class of single-input and single-output discrete-time nonlinear systems,a nonlinear adaptive proportional-integral-differential(PID)control method was proposed by using neural networks and multiple models. Such control method was composed of a linear adaptive PID controller,a neural-based nonlinear adaptive PID controller and a switching mechanism. The linear adaptive PID controller was used to guarantee the boundedness of all signals in the closed-loop system,while the neural-based nonlinear adaptive PID controller was employed to improve the performance of the closed-loop system. By introducing a reasonable switching mechanism,the stability of the closed-loop could be guaranteed,while the control performance was improved. Theoretical analysis illustrated that the proposed control method could guarantee the boundedness of all signals in the closed-loop system,while the tracking error would convergent to any given compact set if the structure and parameters of the neural networks were properly chosen. Then the proposed control method was applied to a continuous stirred tank reactor(CSTR). Simulation result of CSTR demonstrated the effectiveness of the proposed control method. Since the proposed control method was based on the incremental digital PID controller,it had a bright application prospect in industrial process control.
Keywords:PID control  adaptive control  multiple models  neural network  continuous stirred tank reactor
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号