首页 | 本学科首页   官方微博 | 高级检索  
     

求解柔性作业调度问题的协同进化粒子群算法
引用本文:宋存利. 求解柔性作业调度问题的协同进化粒子群算法[J]. 计算机工程与应用, 2013, 49(21): 15-18
作者姓名:宋存利
作者单位:大连交通大学,辽宁 大连 116028
基金项目:辽宁省教育厅计划项目(No.L2010086)。
摘    要:柔性作业车间调度问题是典型的NP难题。柔性作业车间调度问题涉及到设备分配和作业分配两个问题,并且两问题之间具有较强的耦合性,提出了基于协同进化的粒子群算法。该算法将设备选择和工件调度分别作为两个寻优变量,利用PSO算法分别进行寻优,根据两个变量的内容进行互相评价。实验表明该算法对FJSP问题的有效性。

关 键 词:粒子群算法  柔性车间作业调度问题  最小化完工时间  邻域搜索  

Co-evolution Particle Swarm Optimization algorithm for flexible job-shop scheduling problem
SONG Cunli. Co-evolution Particle Swarm Optimization algorithm for flexible job-shop scheduling problem[J]. Computer Engineering and Applications, 2013, 49(21): 15-18
Authors:SONG Cunli
Affiliation:Dalian Jiaotong University, Dalian, Liaoning 116028, China
Abstract:The flexible job shop scheduling problem is a typical NP-hard problem. This problem involves two problems, such as equipment allocation and job assignment, and these two problems have strong couplings. To solve this problem a co-evolution Particle Swarm Optimization algorithm is proposed. The algorithm solves the equipment allocation and job assignment as two optimization variables, optimized respectively and evaluated mutually according to the contents of them. The experiments show the algorithm has obvious advantage on FJSP problem.
Keywords:Particle Swarm Optimization(PSO)algorithm  flexible job shop scheduling problem  makespan  neighborhood search
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号