首页 | 本学科首页   官方微博 | 高级检索  
     

基于IPSO-BiLSTM-AM模型的超短期风电功率预测方法
引用本文:高鹭1,孔繁苗1,张飞1,2,任晓颖1,2,张晓琳1,秦岭1. 基于IPSO-BiLSTM-AM模型的超短期风电功率预测方法[J]. 陕西电力, 2022, 0(4): 27-34
作者姓名:高鹭1  孔繁苗1  张飞1  2  任晓颖1  2  张晓琳1  秦岭1
作者单位:(1.内蒙古科技大学信息工程学院,内蒙古包头 014010;2.华北电力大学可再生能源学院,北京 102206)
摘    要:针对现有模型预测准确性与稳定性较低的问题,提出一种以BiLSTM为基础的风电功率预测模型。BiLSTM可以很好的处理风电多变量之间的非线性关系,其次采用改进的PSO优化BiLSTM的超参数,并通过AM训练模型的权重。最后采用内蒙古自治区某风电场的历史数据进行提前0~15 min试验。结果表明,提出的IPSO-BiLSTM-AM模型具有较高的预测精度,可以为风电场电力调度与控制提供科学参考。

关 键 词:风功率预测  改进的粒子群算法  双向长短期记忆神经网络  注意力机制

Ultra Short-term Wind Power Prediction Method Based on IPSO-BiLSTM-AM Model
GAO Lu1,KONG Fanmiao1,ZHANG Fei1,2,REN Xiaoying1,2,ZHANG Xiaolin1,QIN Ling1. Ultra Short-term Wind Power Prediction Method Based on IPSO-BiLSTM-AM Model[J]. Shanxi Electric Power, 2022, 0(4): 27-34
Authors:GAO Lu1  KONG Fanmiao1  ZHANG Fei1  2  REN Xiaoying1  2  ZHANG Xiaolin1  QIN Ling1
Affiliation:(1. Institute of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China;2. Renewable Energy College,North China Electric Power University, Beijing 102206, China)
Abstract:In view of the low accuracy and stability of existing models, a wind power prediction model based on BiLSTM is proposed. BiLSTM can handle the non-linear relationship among wind power multi-variables well. Secondly,the improved PSO algorithm is used to optimize the hyper parameters of BiLSTM, and the AM is used for training the weight of the model. Finally, a 0~15 minute advance test is carried out with the historical data of a wind farm in Inner Mongolia Autonomous Region. The results show that the proposed IPSO-BiLSTM-AM model has high prediction accuracy,which can provide scientific reference for the power dispatch and control of wind farms.
Keywords:wind power prediction  improved particle swarm optimization  bidirectional long short-term memory neural network  attention mechanism
点击此处可从《陕西电力》浏览原始摘要信息
点击此处可从《陕西电力》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号