首页 | 本学科首页   官方微博 | 高级检索  
     

基于监控系统的人体行为识别技术研究
引用本文:韩骏浩,赵怀勋. 基于监控系统的人体行为识别技术研究[J]. 网络安全技术与应用, 2014, 0(6): 23-24,26
作者姓名:韩骏浩  赵怀勋
作者单位:武警工程大学信息工程系,陕西710086
摘    要:针对传统行为识别技术实时性、鲁棒性较差等问题,提出了一种高效鲁棒性的人体行为识别算法。通过基于Meanshift和Kalman滤波相结合的跟踪算法来跟踪定位人体目标;利用肢体特征和区域特征来提取运动特征;利用基于OAA的支持向量机分类识别。仿真实验表明,该算法实时性好、鲁棒性高,能有效应用于监控系统中。

关 键 词:行为识别  目标跟踪  特征提取  监控系统

Research of Human Action Recognition Based on Monitoring System
Han Junhao,Zhao Huaixun. Research of Human Action Recognition Based on Monitoring System[J]. Net Security Technologies and Application, 2014, 0(6): 23-24,26
Authors:Han Junhao  Zhao Huaixun
Affiliation:Han Junhao, Zhao Huaixun
Abstract:In view of the traditional behavior recognition technology's problem of poor real-time performance and robustness, this paper proposes a kind of efficient and robust human behavior recognition algorithm. Meanshift and Kalman is used when the human behavior is tracked real-timely, and selected area of regional and joint angles of limbs to represent human movement, on the target classification step, the OAA-SVM is set up. Simulation experiments show that this method has better robustness and the real-time performance, and can be effectively to the monitoring system.
Keywords:action recognition  target tracking  feature extraction  monitoring system
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号