首页 | 本学科首页   官方微博 | 高级检索  
     

改进WMIL的实时人脸检测与跟踪
引用本文:谢宏,张爱林,陈海滨,张小刚,陈俊辉,李云峰,向启均. 改进WMIL的实时人脸检测与跟踪[J]. 电子测量与仪器学报, 2016, 30(3): 465-472. DOI: 10.13382/j.jemi.2016.03.017
作者姓名:谢宏  张爱林  陈海滨  张小刚  陈俊辉  李云峰  向启均
作者单位:湖南大学电气与信息工程学院自动化系 长沙 410082
基金项目:国家自然科学基金(61174050
摘    要:针对WMIL在光照突变或者全部遮挡的的情况下会出现跟踪失败以及在跟踪错误情况下无法自动恢复跟踪的问题,提出了一种基于改进WMIL算法和AdaBoost的实时人脸检测和跟踪算法。利用AdaBoost的方法检测人脸信息,然后在改进WMIL算法的框架下,对人脸图像进行多尺度表示,采用压缩感知的方法来提取样本特征。最后,利用改进WMIL算法建立分类器对人脸进行跟踪,自适应调整跟踪窗口的大小,并实时更新。实验结果表明,改善了WMIL存在的不足,有效解决了在人脸外观变化,姿态改变、快速运动等情况下,能稳定准确地实现目标的实时跟踪。

关 键 词:人脸检测  人脸跟踪,压缩感知  多尺度表示

Real time face detection and tracking algorithm based on improved WMIL
Xie Hong,Zhang Ailin,Chen Haibin,Zhang Xiaogang,Chen Junhui,Li Yunfeng and Xiang Qijun. Real time face detection and tracking algorithm based on improved WMIL[J]. Journal of Electronic Measurement and Instrument, 2016, 30(3): 465-472. DOI: 10.13382/j.jemi.2016.03.017
Authors:Xie Hong  Zhang Ailin  Chen Haibin  Zhang Xiaogang  Chen Junhui  Li Yunfeng  Xiang Qijun
Affiliation:College of Electrical and Information Engineering, Hunan University, Changsha 410082, China,College of Electrical and Information Engineering, Hunan University, Changsha 410082, China,College of Electrical and Information Engineering, Hunan University, Changsha 410082, China,College of Electrical and Information Engineering, Hunan University, Changsha 410082, China,College of Electrical and Information Engineering, Hunan University, Changsha 410082, China,College of Electrical and Information Engineering, Hunan University, Changsha 410082, China and College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Abstract:Under the condition of the light mutation or the total occlusion of the object, the tracking will fail and cannot be automatically recovered by using weighted multiple instanced learning (WMIL). Aiming at these problems, a new real time face detection and tracking algorithm based on the improved WMIL and AdaBoost was presented. The algorithm firstly used AdaBoost to obtain the face detection information, adopted the multi scale image representation under the WMIL framework and extracted the sample features by the compression perception method. Finally, the model classifier was established by the improved WMIL algorithm to track target face. The tracking window scale was adaptively adjusted and updated in real time. The experiment results show that the algorithm overcomes the traditional WMIL deficiencies and can stably and accurately track the face target in real time under the situations of the appearance changes, the target posture changes and fast moving, etc.
Keywords:face detection  face tracking  compressive sensing  multiscale representation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号