首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于鲁棒估计的极限学习机方法
引用本文:胡义函,张小刚,陈 华,李晶辉. 一种基于鲁棒估计的极限学习机方法[J]. 计算机应用研究, 2012, 29(8): 2926-2930
作者姓名:胡义函  张小刚  陈 华  李晶辉
作者单位:1. 湖南大学电气与信息工程学院,长沙,410082
2. 湖南大学信息科学与工程学院,长沙,410082
基金项目:国家自然科学基金资助项目(60874096, 61174050)
摘    要:
极限学习机(ELM)是一种单隐层前馈神经网络(single-hidden layer feedforward neural networks,SLFNs),它相较于传统神经网络算法来说结构简单,具有较快的学习速度和良好的泛化性能等优点。ELM的输出权值是由最小二乘法(least square,LE)计算得出,然而经典的LS估计的抗差能力较差,容易夸大离群点和噪声的影响,从而造成训练出的参数模型不准确甚至得到完全错误的结果。为了解决此问题,提出一种基于M估计的采用加权最小二乘方法来取代最小二乘法计算输出权值的鲁棒极限学习机算法(RBELM),通过对多个数据集进行回归和分类分析实验,结果表明,该方法能够有效降低异常值的影响,具有良好的抗差能力。

关 键 词:极限学习机  稳健估计  鲁棒极限学习机  M估计  神经网络

Extreme learning machine on robust estimation
HU Yi-han,ZHANG Xiao-gang,CHEN Hu,LI Jing-hui. Extreme learning machine on robust estimation[J]. Application Research of Computers, 2012, 29(8): 2926-2930
Authors:HU Yi-han  ZHANG Xiao-gang  CHEN Hu  LI Jing-hui
Affiliation:a. College of Electrical & Information Engineering, b. School of Information Science & Engineering, Hunan University, Changsha 410082, China
Abstract:
Extreme learning machineELM is a kind of single-hidden layer feedforword neural networksSLFNs. Comparing with traditional neural network algorithms, it is simpler in structure, with higher learning speed, and good generalization performance. The output-weight of ELM was calculated by LSEleast square estimation method. However, LSE lack of robustness, the result would be seriously damaged when there were outliers in the training data. In order to solve this problem, this paper derived a novel approach based on M-estimators of extreme learning machine called RBELM. Simulation results indicate that the RBELM proposed can significantly robust against data noise and outliers.
Keywords:extreme learning machine(ELM)  robust estimation  robust extreme learning machine(RELM)  M-estimator  neural networks
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号