首页 | 本学科首页   官方微博 | 高级检索  
     


Design and experiment of an electromagnetic levitation system for a micro mirror
Authors:Xiao  Qijun  Wang  Yuan  Dricot  Samuel  Kraft  Michael
Affiliation:1.School of Electronics and Electrical Engineering, Zhaoqing University, Zhaoqing, 526061, China
;2.Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liege, 4000, Liège, Belgium
;3.MICAS, ESAT Department, University of Leuven, 3001, Leuven, Belgium
;
Abstract:

In this paper, the design and characterization of a contactless electromagnetic levitation and electrostatic driven microsystem is presented, which has applications for example for large scale angle rotation micro mirrors. The proposed design can levitate a fabricated aluminum micro rotor which can incorporate a mirror and control it to rotate around the vertical axis within the range of ±?180°, which enlarges the scanning angle dramatically compared with conventional torsion micro mirrors. The rotation angle of the micro rotor is detected by the change of capacitance and controlled by the electrostatic force produced by variable capacitors. The levitation of the micro rotor is realized by utilizing electromagnetic inductions. The rotation is achieved through electrostatic forces generated by a digital controller. The hybrid system design for a micro rotor, combining magnetic and electrostatic forces is introduced. The digital control strategy is based on a PID controller with bias voltage. The detection interface circuit, which is based on frequency multiplexing, is also presented in this paper. It has been experimentally shown that the proposed design can levitate a 1.65 mm radius and 8 µm thickness aluminum micro rotor to 100 µm height with 20 MHz frequency and 0.5A p-p input current. Square and slope wave input experiments were carried out. The experimental results show that the control principal is in good agreement with the simulation models and this applies as well to the time-response performance and stability.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号