首页 | 本学科首页   官方微博 | 高级检索  
     


Pairwise Markov chains
Authors:Pieczynski   W.
Affiliation:Departement CITI, Inst. Nat. des Telecommun., Evry, France;
Abstract:
We propose a model called a pairwise Markov chain (PMC), which generalizes the classical hidden Markov chain (HMC) model. The generalization, which allows one to model more complex situations, in particular implies that in PMC the hidden process is not necessarily a Markov process. However, PMC allows one to use the classical Bayesian restoration methods like maximum a posteriori (MAP), or maximal posterior mode (MPM). So, akin to HMC, PMC allows one to restore hidden stochastic processes, with numerous applications to signal and image processing, such as speech recognition, image segmentation, and symbol detection or classification, among others. Furthermore, we propose an original method of parameter estimation, which generalizes the classical iterative conditional estimation (ICE) valid for a classical hidden Markov chain model, and whose extension to possibly non-Gaussian and correlated noise is briefly treated. Some preliminary experiments validate the interest of the new model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号