首页 | 本学科首页   官方微博 | 高级检索  
     


On the limits of cache-oblivious rational permutations
Authors:Francesco Silvestri  
Affiliation:aDipartimento di Ingegneria dell’Informazione, Università di Padova, Via Gradenigo 6/B, 35131 Padova, Italy
Abstract:Permuting a vector is a fundamental primitive which arises in many applications. In particular, rational permutations, which are defined by permutations of the bits of the binary representations of the vector indices, are widely used. Matrix transposition and bit-reversal are notable examples of rational permutations. In this paper we contribute a number of results regarding the execution of these permutations in cache hierarchies, with particular emphasis on the cache-oblivious setting. We first bound from below the work needed to execute a rational permutation with an optimal cache complexity. Then, we develop a cache-oblivious algorithm to perform any rational permutation, which exhibits optimal work and cache complexities under the tall cache assumption. We finally show that for certain families of rational permutations (including matrix transposition and bit reversal) no cache-oblivious algorithm can exhibit optimal cache complexity for all values of the cache parameters. This latter result specializes the one proved by Brodal and Fagerberg for general permutations to the case of rational permutations, and provides further evidence that the tall cache assumption is often necessary to attain cache optimality in the context of cache-oblivious algorithms.
Keywords:Rational permutation   Cache-oblivious algorithm   Tall cache   Lower bound   Impossibility result   Memory hierarchy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号