摘 要: | 高效的调制方式识别方法可以提高通信效率,推动通信行业的进一步发展。文中设计了一种基于前置LSTM编码的残差 注意力网络,其可以明显提高识别准确率。在第一部分,给出了网络的基本结构。该网络主体使用残差结构,前置LSTM层对数据序列编码,并采用加入了软阈值降噪的注意力机制。第二部分使用包含了24种调制方式的开源数据集作为数据来源,设计了多个实验来比较网络的性能表现,并探究了数据质量、调制方式、网络深度等多个因素对神经网络识别性能的影响。实验结果表明,文中搭建的网络表现优秀,在高信噪比数据下的准确率仍超过了95%。
|