首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的语义图像分类研究
引用本文:李晶,姚明海. 基于支持向量机的语义图像分类研究[J]. 微机发展, 2010, 0(2): 75-78
作者姓名:李晶  姚明海
作者单位:浙江工业大学信息工程学院;
摘    要:
随着多媒体数据库的不断发展,传统的利用关键词进行图像检索已经越来越不能满足图像检索的需要,基于内容的图像检索已成为当前的研究热点。对图像的颜色和纹理特征进行提取,融合图像的颜色和纹理特征作为图像的特征向量,用支持向量机实现图像的低层特征和高级语义间的关联。实验结果表明,多特征的图像检索要比单一的特征检索效果好,在HSV颜色特征的基础上引入灰度共生矩阵纹理特征后可有效提高检索效率,而且采用支持向量机融合多特征可成功用于图像的语义的检索。

关 键 词:支持向量机  HSV颜色特征  灰度纹理特征  灰度共生矩阵

Research of Semantic Image Classification Based on Support Vector Machine
LI Jing,YAO Ming-hai. Research of Semantic Image Classification Based on Support Vector Machine[J]. Microcomputer Development, 2010, 0(2): 75-78
Authors:LI Jing  YAO Ming-hai
Affiliation:LI Jing,YAO Ming-hai(Information Engineering College,Zhejiang University of Technology,Hangzhou 310014,China)
Abstract:
With the continually development of multimedia database,traditional image retrival method which is based on key words can not satisfy most of the requirement of image retrieval.In recent years,more and more researchers have transferred their focus of scientific researches on content-based image retrieval.Extract the color and texture feature of the image,integrate color feature and texture feature as the feature vectors.Use support vector machine correlating image low-level feature with high-level semantic....
Keywords:support vector machine  HSV color feature  gray scale texture feature  GLCM  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号