首页 | 本学科首页   官方微博 | 高级检索  
     

快速自适应非局部空间加权与隶属度连接的模糊C-均值噪声图像分割算法
引用本文:王小鹏,王庆圣,焦建军,梁金诚. 快速自适应非局部空间加权与隶属度连接的模糊C-均值噪声图像分割算法[J]. 电子与信息学报, 2022, 43(1): 171-178. DOI: 10.11999/JEIT191016
作者姓名:王小鹏  王庆圣  焦建军  梁金诚
作者单位:兰州交通大学电子与信息工程学院 兰州 730070;兰州交通大学电子与信息工程学院 兰州 730070;兰州交通大学电子与信息工程学院 兰州 730070;兰州交通大学电子与信息工程学院 兰州 730070
摘    要:针对传统模糊C-均值聚类(FCM)算法难以对噪声图像进行分割的问题,该文提出一种快速自适应非局部空间加权与隶属度连接的模糊FCM抗噪图像分割算法.首先,利用一种非局部空间信息快速计算方法,将以图像所有像素为循环的原始非局部信息计算方法,改为以搜索窗口尺寸为循环,利用空间位移图像与递归高斯滤波的计算方法,克服非局部空间信息计算复杂的问题;其次,计算原始图像与非局部信息项的差值的平方,将其作为非局部信息项的自适应权重,并将差值的平方作倒数变换,作为原始图像的自适应权重;最后,将每个聚类簇中所有像素隶属度之和的对数平方加入目标函数的分母,形成隶属度连接,减少目标函数迭代次数.含噪人工与自然图像分割实验表明,该算法在分割准确度、平均交并比、归一化互信息、运行时间与迭代次数等性能方面优于其他几种FCM算法.

关 键 词:噪声图像分割  模糊C-均值聚类  非局部空间信息  自适应加权  隶属度连接

Fuzzy C-Means Clustering with Fast and Adaptive Non-local Spatial Constraint and Membership Linking for Noise Image Segmentation
WANG Xiaopeng,WANG Qingsheng,JIAO Jianjun,LIANG Jincheng. Fuzzy C-Means Clustering with Fast and Adaptive Non-local Spatial Constraint and Membership Linking for Noise Image Segmentation[J]. Journal of Electronics & Information Technology, 2022, 43(1): 171-178. DOI: 10.11999/JEIT191016
Authors:WANG Xiaopeng  WANG Qingsheng  JIAO Jianjun  LIANG Jincheng
Abstract:
Keywords:
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号