首页 | 本学科首页   官方微博 | 高级检索  
     


Double-Gate Tunnel FET With High-κ Gate Dielectric
Authors:Boucart   K. Ionescu   A.M.
Affiliation:Swiss Fed. Inst. of Technol., Lausanne;
Abstract:
In this paper, we propose and validate a novel design for a double-gate tunnel field-effect transistor (DG tunnel FET), for which the simulations show significant improvements compared with single-gate devices using a gate dielectric. For the first time, DG tunnel FET devices, which are using a high-gate dielectric, are explored using realistic design parameters, showing an on-current as high as 0.23 mA for a gate voltage of 1.8 V, an off-current of less than 1 fA (neglecting gate leakage), an improved average subthreshold swing of 57 mV/dec, and a minimum point slope of 11 mV/dec. The 2D nature of tunnel FET current flow is studied, demonstrating that the current is not confined to a channel at the gate-dielectric surface. When varying temperature, tunnel FETs with a high-kappa gate dielectric have a smaller threshold voltage shift than those using SiO2, while the subthreshold slope for fixed values of Vg remains nearly unchanged, in contrast with the traditional MOSFET. Moreover, an Ion/Ioff ratio of more than 2 times 1011 is shown for simulated devices with a gate length (over the intrinsic region) of 50 nm, which indicates that the tunnel FET is a promising candidate to achieve better-than-ITRS low-standby-power switch performance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号