首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the thermal shrink mechanism,thermal conductivity and compressive resistance of TaTiP3O12 ceramics
Affiliation:Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
Abstract:Dense TaTiP3O12 ceramics were synthesized by the solid-state method and spark plasma sintering (SPS) with 6 wt% V2O5 as a sintering aid, and their phase, microstructure, thermal conductivity, hardness, compressive strength, and expansion property and mechanism were investigated. Results show that the pure phase can be achieved by the two methods. In particular, the sample prepared by SPS possesses a relative density of 97.62% and a porosity of 3.07%, and has better properties than that prepared by the solid-state method. The SPS sample has a thermal conductivity at room temperature of 2.03 w/(m· °C), a Vickers hardness of 4.34 GPa and a compressive strength of 175.98 MPa, which are 0.95, 1.49 and 1.59 times greater than those of the sample prepared by the solid-state method, respectively. In addition, the TaTiP3O12 ceramic prepared by SPS exhibits a linear ultralow negative thermal expansion property with a coefficient of thermal expansion of ?0.74 × 10?6 °C ?1 (-100–400 °C). The negative thermal expansion in TaTiP3O12 is induced by the coupling effect of Ta(Ti)O6] octahedron and PO4] tetrahedron caused by the transverse vibration of bridging oxygen atoms.
Keywords:Negative thermal expansion  Thermal shrink mechanism  Thermal conductivity  Compressive strength
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号