首页 | 本学科首页   官方微博 | 高级检索  
     


Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES
Authors:K.K.J. Ranga Dinesh  M.P. Kirkpatrick
Affiliation:a School of Engineering, Cranfield University, Cranfield, Bedford MK43 0AL, UK
b School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia
Abstract:Large eddy simulations (LES) are used to investigate turbulent isothermal swirling flows with a strong emphasis on vortex breakdown, recirculation and instability behaviour. The Sydney swirl burner configuration is used for all simulated test cases from low to high swirl and Reynolds numbers. The governing equations for continuity and momentum are solved on a structured Cartesian grid, and a Smagorinsky eddy viscosity model with the localised dynamic procedure is used as the sub-grid scale turbulence model. The LES successfully predicts both the upstream first recirculation zone generated by the bluff body and the downstream vortex breakdown bubble. The frequency spectrum indicates the presence of low frequency oscillations and the existence of a central jet precession as observed in experiments. The LES calculations well captured the distinct precession frequencies. The results also highlight the precession mode of instability in the center jet and the oscillations of the central jet precession, which forms a precessing vortex core. The study further highlights the predictive capabilities of LES on unsteady oscillations of turbulent swirling flow fields and provides a good framework for complex instability investigations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号