首页 | 本学科首页   官方微博 | 高级检索  
     


Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications
Authors:Suiyan Geng Kivinen  J Xiongwen Zhao Vainikainen  P
Affiliation:SMARAD/Dept. of Radio Sci. & Eng., Helsinki Univ. of Technol., Espoo;
Abstract:This paper presents and analyzes the results of millimeter-wave 60-GHz frequency range propagation channel measurements that are performed in various indoor environments for continuous-route and direction-of-arrival (DOA) measurement campaigns. The statistical parameters of the propagation channel, such as the number of paths, the RMS delay spread, the path loss, and the shadowing, are inspected. Moreover, the interdependencies of different characteristics of the multipath channel are also investigated. A linear relationship between the number of paths and the delay spread is found, negative cross correlation between the shadow fading and the delay spread can be established, and an upper bound exponential model of the delay spread and the path loss is developed to estimate the worst case of the RMS delay spread at given path loss. Based on the DOA measurements that are carried out in a room line of sight (LOS)] and in a corridor with both LOS and nonline-of-sight (NLOS) scenarios, radio-wave propagation mechanisms are studied. It is found that considering the direct wave and the first-order reflected waves from smooth surfaces is sufficient in the LOS cases. Transmission loss is very high; however, diffraction is found to be a significant propagation mechanism in NLOS propagation environments. The results can be used for the design of 60-GHz radio systems in short-range wireless applications.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号