首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的机械扩径工艺参数预测方法
引用本文:杨艳子,郭宝峰,金淼. 基于BP神经网络的机械扩径工艺参数预测方法[J]. 塑性工程学报, 2008, 15(3): 147-151
作者姓名:杨艳子  郭宝峰  金淼
基金项目:国家自然科学基金资助项目 , 河北省自然科学基金资助项目
摘    要:
文章给出了一种基于BP神经网络建立管筒形零件机械扩径工艺参数与成形精度控制参数间的映射关系,并将其嵌入遗传算法以实现工艺参数优化的机械扩径工艺参数预测方法。所涉及的工艺参数包括扩径率、管坯横断面圆度和模具外径与制品内径之比;成形精度控制参数包括制品外径及其横断面圆度误差。该方法能够很好地预测材质为X52、规格为(406mm~720mm)×9mm的管线钢管机械扩径的工艺参数,并给出一个满足其成形精度要求的最佳工艺参数组合。

关 键 词:机械扩径  有限元模拟  BP神经网络  遗传算法  正交实验法

The prediction of processing parameters in mechanical expanding by BP neural network
Abstract:
This paper presented a forecasting method for mechanical expanding processing parameters which optimized by genetic algorithm with BP neural network which mapped the relationship between the mechanical expanding processing parameters of tube and the control precision parameters of forming.The involved processing parameters were ratio of expanding、roundness of steel tube and radius of die,and the forming precision of product including dimensional precision and shape precision.The optimization parameters of products with material X52、specifications(406mm~720mm)×9mm were forecasted through this method.
Keywords:mechanical expanding  finite element simulation  BP neural network  genetic algorithm  the normal experimental method
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号