首页 | 本学科首页   官方微博 | 高级检索  
     


The improved radial basis function neural network and its application
Authors:Xudong Wang  Yuhua Ding  Huihe Shao
Affiliation:1. Department of Automation, Shanghai Ji?o Tong University, 200030, Shanghai, People's Republic of China
Abstract:Compared with other feed-forward neural networks, radial basis function neural networks (RBFNN) have many advantages which make them more suitable for nonlinear system modeling, and they have recently received considerable attention. In this paper, a RBFNN is employed to model strongly nonlinear systems. First, the problems of nonlinear system modeling are analyzed, and then the structure of the RBFNN as well as the training algorithm are improved to solve these problems. Finally, an industrial high-purity distillation column, which is a strongly nonlinear system, is successfully modeled with the improved RBFNN. Owing to the complexities of a nonlinear system, it is necessary to use a real-time model correction method to modify the parameters of the RBFNN model in real time. One efficient method is proposed in this paper. The idea is to employ the Givens transformation to modify the parameters of the RBFNN-based model. This work was presented, in part, at the International Symposium on Artificial Life and Robotics, Oita, Japan, February 18–20, 1996
Keywords:Radial basis function neural networks  Orthogonal least squares algorithm  Nonlinear system modeling  Givens transformation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号