首页 | 本学科首页   官方微博 | 高级检索  
     


Ionic Modulation of Interfacial Magnetism in Light Metal/Ferromagnetic Insulator Layered Nanostructures
Authors:Mengmeng Guan  Lei Wang  Shishun Zhao  Bin Peng  Wei Su  Zhexi He  Guohua Dong  Tai Min  Jing Ma  Zhongqiang Hu  Wei Ren  Zuo‐Guang Ye  Ce‐Wen Nan  Ziyao Zhou  Ming Liu
Abstract:
Ferromagnetic insulator thin film nanostructures are becoming the key component of the state‐of‐the‐art spintronic devices, for instance, yttrium iron garnet (YIG) with low damping, high Curie temperature, and high resistivity is explored into many spin–orbit interactions related spintronic devices. Voltage modulation of YIG, with great practical/theoretical significance, thus can be widely applied in various YIG‐based spintronics effects. Nevertheless, to manipulate ferromagnetism of YIG through electric field (E‐field), instead of current, in an energy efficient manner is essentially challenging. Here, a YIG/Cu/Pt layered nanostructure with a weak spin–orbit coupling interaction is fabricated, and then the interfacial magnetism of the Cu and YIG is modified via ionic liquid gating method significantly. A record‐high E‐field‐induced ferromagnetic resonance field shift of 1400 Oe is achieved in YIG (17 nm)/Cu (5 nm)/Pt (3 nm)/ionic liquid/Au capacitor layered nanostructures with a small voltage bias of 4.5 V. The giant magnetoelectric tunability comes from voltage‐induced extra ferromagnetic ordering in Cu layer, confirmed by the first‐principle calculation. This E‐field modulation of interfacial magnetism between light metal and magnetic isolator may open a door toward compact, high‐performance, and energy‐efficient spintronic devices.
Keywords:Cu magnetization  ferromagnetic resonance  ionic liquid gating  magnetoelectric coupling  yttrium iron garnet
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号