首页 | 本学科首页   官方微博 | 高级检索  
     


Retarding the Crystallization of a Nonfullerene Electron Acceptor for High‐Performance Polymer Solar Cells
Authors:Wei Li  Mengxue Chen  Zhuohan Zhang  Jinlong Cai  Huijun Zhang  Robert S Gurney  Dan Liu  Jiangsheng Yu  Weihua Tang  Tao Wang
Abstract:Developing a fundamental understanding of the molecular order within the photoactive layer, and the influence therein of solution casting conditions, is a key factor in obtaining high power conversation efficiency (PCE) polymer solar cells. Herein, the molecular order in PBDB‐T:INPIC‐4F nonfullerene solar cells is tuned by control of the molecular organization time during film casting, and the crucial role of retarding the crystallization of INPIC‐4F in achieving high performance is demonstrated. When PBDB‐T:INPIC‐4F is cast with the presence of solvent vapor to prolong the organization time, INPIC‐4F molecules form spherulites with a polycrystalline structure, resulting in large phase separation and device efficiency below 10%. On the contrary, casting the film on a hot substrate is effective in suppressing the formation of the polycrystalline structure, and encourages face‐on π?π stacking of INPIC‐4F. This molecular transformation of INPIC‐4F significantly enhances the absorption ability of INPIC‐4F at long wavelengths and facilitates a fine phase separation to support efficient exciton dissociation and balanced charge transport, leading to the achievement of a maximum PCE of 13.1%. This work provides a rational guide for optimizing nonfullerene polymer solar cells consisting of highly crystallizable small molecular electron acceptors.
Keywords:crystallization  nonfullerene acceptor  polymer solar cells  power conversion efficiency
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号