首页 | 本学科首页   官方微博 | 高级检索  
     

基于DGA支持向量机的变压器故障诊断
作者单位:;1.清华大学;2.北京国网富达科技发展有限责任公司
摘    要:针对基于DGA的变压器故障诊断方法在实际操作中存在的不足,提出两种解决方案:基于粒子群优化支持向量机的变压器故障诊断、基于差分进化支持向量机的变压器故障诊断。通过分析两种方案的算法原理建立支持向量机的变压器故障诊断模型,从而完成参数的优化,对得到的最优参数进行验证,获取最优的支持向量机模型。在Matlab软件平台上进行仿真实验,结果证明,采用基于粒子群优化支持向量机的变压器故障诊断结果获取的变压器故障诊断率较高;基于差分进化支持向量机的变压器故障诊断方法的误判率较低,全局寻优能力较好,相比于粒子群优化算法,差分进化支持向量机的优化精度更高。

关 键 词:DGA  支持向量机  变压器  故障诊断  参数优化  SVM模型

Transformer fault diagnosis based on DGA support vector machine
Abstract:
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号