首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network
Authors:Luis Manuel Rosales-Colunga,Raú  l Gonzá  lez Garcí  a,Antonio De Leó  n Rodrí  guez
Affiliation:1. División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a secc, San Luis Potosí, SLP 78216, Mexico;2. Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP 78210, Mexico
Abstract:
Biological hydrogen production is an active research area due to the importance of this gas as an energy carrier and the advantages of using biological systems to produce it. A cheap and practical on-line hydrogen determination is desired in those processes. In this study, an artificial neural network (ANN) was developed to estimate the hydrogen production in fermentative processes. A back propagation neural network (BPNN) of one hidden layer with 12 nodes was selected. The BPNN training was done using the conjugated gradient algorithm and on-line measurements of dissolved CO2, pH and oxidation-reduction potential during the fermentations of cheese whey by Escherichia coli ΔhycA ΔlacI (WDHL) strain with or without pH control. The correlation coefficient between the hydrogen production determined by gas chromatography and the hydrogen production estimated by the BPNN was 0.955. Results showed that the BPNN successfully estimated the hydrogen production using only on-line parameters in genetically modified E. coli fermentations either with or without pH control. This approach could be used for other hydrogen production systems.
Keywords:Back propagation neural network   Dissolved CO2   Hydrogen   Redox potential   pH   Cheese whey
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号