Quantitative phase imaging of nanoscale electrostatic and magnetic fields using off-axis electron holography |
| |
Authors: | Martha R. McCartney Nipun Agarwal Suk Chung David A. Cullen Myung-Geun Han Kai He Luying Li Hua Wang Lin Zhou David J. Smith |
| |
Affiliation: | 1. Department of Physics, Arizona State University, Tempe, AZ 85287, USA;2. School of Materials, Arizona State University, Tempe, AZ 85287, USA |
| |
Abstract: | Off-axis electron holography in the transmission electron microscope is a powerful interferometric technique that enables electrostatic and magnetic fields to be imaged and quantified with spatial resolution often approaching the nanometer scale. Here, we demonstrate the capabilities of the technique for phase quantification at the nanoscale by briefly reviewing some of our recent studies of nanostructured materials. Examples that are described include determination of the electrostatic potential profiles associated with doped Si- and GaAs-based semiconductor devices, measurement of hole accumulation in Ge quantum dots, mapping of polarization fields in III-nitride heterostructures, and observation of the remanent states and reversal mechanisms of lithographically patterned magnetic nanorings. Some issues associated with sample preparation for doped semiconductor heterostructures are also briefly discussed. |
| |
Keywords: | Off-axis electron holography Semiconductor devices Polarization fields Magnetization reversal |
本文献已被 ScienceDirect 等数据库收录! |
|