Abstract: | Blends of brominated epoxy (BE) and conventional epoxy resins were studied following curing with aliphatic triethylenetetramine (TETA), etheric (polyether diamine‐ PEA4), and aromatic (3,3′‐diamino diphenyl sulfone [DDS]) hardeners. The addition of BE resulted in an increase in Tg in all tested blends. Blends with 50 wt% BE cured with TETA demonstrated an increase in flexural modulus and flexural strength, while preserving the elongation. Blends with 40 wt% BE cured with PEA4 and 50 wt% BE cured with DDS resulted in a significant enhanced tensile elongation. The shear strength of all cured systems decreased moderately with the addition of BE exhibiting a mixed mode failure. Analysis of the fracture morphology using electron microscopy supported the increase of toughness levels as a result of incorporating BE to conventional epoxy. A unique nodular and rough fracture morphology was obtained, which is related to a toughening mechanism caused by the addition of BE. It was concluded that blends of BE and conventional epoxy could be used as structural adhesives having high Tg, enhanced mechanical properties and increased toughness. POLYM. ENG. SCI., 59:206–215, 2019. © 2018 Society of Plastics Engineers |