首页 | 本学科首页   官方微博 | 高级检索  
     


Encouraging Experimental Results on Learning CNF
Authors:Mooney  Raymond J.
Affiliation:(1) Department of Computer Sciences, University of Texas, 78712 Austin, TX
Abstract:This paper presents results comparing three simple inductive learning systems using different representations for concepts, namely: CNF formulae, DNF formulae, and decision trees. The CNF learner performs surprisingly well. Results on five natural data sets indicates that it frequently trains faster and produces more accurate and simpler concepts.
Keywords:concept induction  experimental comparison  CNF  DNF  decision trees
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号