首页 | 本学科首页   官方微博 | 高级检索  
     

阀控电液伺服压力脉冲实验自抗扰控制方法
引用本文:苏春波,汪成文,苑永亮,赵二辉,权龙,成磊.阀控电液伺服压力脉冲实验自抗扰控制方法[J].控制与决策,2024,39(6):1927-1935.
作者姓名:苏春波  汪成文  苑永亮  赵二辉  权龙  成磊
作者单位:太原理工大学 机械与运载工程学院,太原 030024;太原理工大学 机械与运载工程学院,太原 030024;先进半导体光电器件与系统集成山西省重点实验室,山西 晋城 048000;晋城市光机电产业研究院,山西 晋城 048000;先进半导体光电器件与系统集成山西省重点实验室,山西 晋城 048000
基金项目:山西省自然科学基金面上项目(20210302123155);先进半导体光电器件与系统集成山西省重点实验室课题项目(2023SZKF05);山西省回国留学人员科研教研项目(HGKY2019016).
摘    要:针对压力脉冲疲劳测试系统在测试过程中工件体积的不确定性以及脉冲疲劳测试系统的机械与液压双动态耦合问题,首先,提出通过奇异值摄动理论将压力脉冲疲劳测试系统的多动态耦合进行解耦降阶;然后,利用自抗扰控制算法实现对系统模型降阶误差以及体积参数不确定性等干扰的补偿,保证测试系统输出的压力对指令信号的准确跟踪;最后,对基于降阶模型的自抗扰算法的稳定性和误差收敛性进行理论和定量分析,并对算法的可行性和有效性进行联合仿真和实验验证.研究结果表明,基于降阶模型的自抗扰控制算法对压力脉冲疲劳测试系统中工件体积参数的变化具有良好的鲁棒性且能够有效估计和补偿系统模型降阶误差等干扰,其跟踪性能相比于传统的PID控制器最大提升35.4%.

关 键 词:电液伺服系统  自抗扰控制  体积不确定干扰  压力控制  奇异值摄动  系统解耦

Active disturbance rejection control method for valve-controlled electro-hydraulic servo pressure-pulse system
SU Chun-bo,WANG Cheng-wen,YUAN Yong-liang,ZHAO Er-hui,QUAN Long,CHENG Lei.Active disturbance rejection control method for valve-controlled electro-hydraulic servo pressure-pulse system[J].Control and Decision,2024,39(6):1927-1935.
Authors:SU Chun-bo  WANG Cheng-wen  YUAN Yong-liang  ZHAO Er-hui  QUAN Long  CHENG Lei
Affiliation:School of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China;School of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Systems Integration of Shanxi Province,Jincheng 048000,China; Jincheng Research Institute of Opto-mechatronics Industry,Jincheng 048000,China;Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Systems Integration of Shanxi Province,Jincheng 048000,China
Abstract:To address the uncertainty of the workpiece volume and the mechanical and hydraulic dynamic coupling of the test system during the test process, firstly, the multi-dynamic coupling of the pressure pulse fatigue test system is decoupled and downgraded by means of singular value uptake theory. Secondly, the compensation of the downgraded error and volume uncertainty of the system is achieved by using the active disturbance rejection control algorithm, so as to ensure the accurate tracking of the pressure output of the test system to the command signal. Finally, the stability and error convergence of the active disturbance rejection control algorithm based on the simplified model are theoretically and quantitatively analyzed. The feasibility and validity of the control method are verified by co-simulation and experiment. The results show that the active disturbance rejection control algorithm based on the reduced-order model has good robustness to the variation of workpiece volume parameters in the pressure pulse test system and can effectively estimate and compensate for the disturbances such as the reduced-order error of the system model, and its tracking performance is improved by up to 35.4% compared with that of the PID controller.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号