首页 | 本学科首页   官方微博 | 高级检索  
     


Polymer brush coatings for combating marine biofouling
Authors:Wen Jing Yang  Koon-Gee Neoh  En-Tang Kang  Serena Lay-Ming Teo  Daniel Rittschof
Affiliation:1. Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210046, PR China;2. Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore;3. Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119223, Singapore;4. Duke University Marine Laboratory, Nicholas School of the Environment, 135 Duke Marine Lab Road, Beaufort, NC 28516-9721, USA
Abstract:A variety of functional polymer brushes and coatings have been developed for combating marine biofouling and biocorrosion with much less environmental impact than traditional biocides. This review summarizes recent developments in marine antifouling polymer brushes and coatings that are tethered to material surfaces and do not actively release biocides. Polymer brush coatings have been designed to inhibit molecular fouling, microfouling and macrofouling through incorporation or inclusion of multiple functionalities. Hydrophilic polymers, such as poly(ethylene glycol), hydrogels, zwitterionic polymers and polysaccharides, resist attachment of marine organisms effectively due to extensive hydration. Fouling release polymer coatings, based on fluoropolymers and poly(dimethylsiloxane) elastomers, minimize adhesion between marine organisms and material surfaces, leading to easy removal of biofoulants. Polycationic coatings are effective in reducing marine biofouling partly because of their good bactericidal properties. Recent advances in controlled radical polymerization and click chemistry have also allowed better molecular design and engineering of multifunctional brush coatings for improved antifouling efficacies.
Keywords:AA  alginic acid  AAm  acrylamide  AFM  atomic force microscope  AMPS  2-acrylamide-2-methyl-1-propanesulfonate  ATRP  atom transfer radical polymerization  CBMA  carboxybetaine methacrylate  CRP  controlled/living radical polymerization  GPS  3-(glycidoxypropyl)trimethoxysilane  HA  hyaluronic acid  HBFP  hyperbranched fluoropolymer  HEMA  2-hydroxyethyl methacrylate  IDT  isophorone diisocyanate trimer  META  2-(methacryloyloxy)ethyl trimethylammonium chloride  MIC  microbiologically influenced corrosion  MPC  2-methacryloyloxyethyl phosphorylcholine  MWCNT  multi-wall carbon nanotubes  NA  noradrenaline  OEG  oligo(ethylene glycol)  P4VP  poly(4-vinylpridine)  PA  pectic acid  PAA  poly(acrylic acid)  PANI  polyaniline  PDMAEMA  poly(2-dimethylaminoethyl methacrylate)  PDMS  poly(dimethylsiloxane)  PEG  poly(ethylene glycol)  PEGMA  poly(ethylene glycol) methacrylate  PEI  polyethyleneimine  PFPE  penfluoropolyether  PFS  2  3  4  5  6-pentafluorostyrene  PGMA  poly(glycidyl methacrylate)  PS-b-P(EO-stat-AGE)  polystyrene-block-poly[(ethylene oxide)-stat-(allyl glycidyl ether)]  PSPMA  poly(3-sulfopropyl methacrylate)  PTMSPMA  poly(3-(trimethoxysilyl) propyl methacrylate)  PVA-SbQ  poly(vinyl alcohol) with stilbazolium  QAC  quaternary ammonium cations  QAS  quaternary ammonium salts  SABC  surface-active block copolymers  SBMA  sulfobetaine methacrylate  SEBS  polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene  SI-ATRP  surface-initiated atom transfer radical polymerization  SPC  self-polishing copolymer  SQTC  semifluorinated-quaternized triblock copolymers  TBT  tributyltin  TEM  transmission electron microscopy  TPCL  polycaprolactone polyol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号