首页 | 本学科首页   官方微博 | 高级检索  
     

多传感器分布式融合Kalman预报器
引用本文:邓自立, 毛琳. 多传感器分布式融合Kalman预报器[J]. 电子与信息学报, 2006, 28(9): 1542-1545.
作者姓名:邓自立  毛琳
作者单位:黑龙江大学,自动化系,哈尔滨,150080;黑龙江大学,自动化系,哈尔滨,150080
基金项目:国家自然科学基金;黑龙江省重点实验室基金
摘    要:应用现代时间序列分析方法,基于ARMA新息模型,在线性最小方差最优信息融合准则下,对于输入噪声与观测噪声相关且观测噪声相关的多传感器系统,分别提出了按矩阵加权、按标量加权和按对角阵加权的3种分布式融合稳态Kalman 预报器。其中提出了基于Lyapunov方程的局部预报估值误差方差阵和协方差阵计算公式。它们被用于计算最优加权,与单传感器情形相比,可提高估值器的精度。一个跟踪系统的仿真例子说明了其有效性,且说明了3种加权融合预报器的精度无显著差别。但标量加权融合预报器可显著减小计算负担,提供一种快速实时信息融合估计算法。

关 键 词:多传感器信息融合   线性最小方差融合准则   加权融合   Lyapunov方程   分布式融合Kalman 预报器
文章编号:1009-5896(2006)09-1542-04
收稿时间:2005-01-06
修稿时间:2005-06-16

Multisensor Distributed Fusion Kalman Predictor
Deng Zi-li, Mao Lin. Multisensor Distributed Fusion Kalman Predictor[J]. Journal of Electronics & Information Technology, 2006, 28(9): 1542-1545.
Authors:Deng Zi-li  Mao Lin
Affiliation:Department of Automation, Heilongjiang University, Harbin 150080, China
Abstract:By modern time series analysis method, based on ARMA innovation model, under the linear minimum variance optimal information fusion criterion, the distributed fusion steady-state optimal Kalman predictors weighted by matrices, scalars, and diagonal matrices are presented for multisensor systems with correlated input and observation noises, and with correlated observation noises, respectively. Based on the Lyapunov equations, the formulas of computing local predicting error variances and covariances are given, which are applied to compute optimal weights. Compared to the single sensor case, the accuracy of the fused predictor is improved. A simulation example for tracking systems shows its effectiveness, and shows that the accuracy distinction of the predictors weighted by three ways is not obvious, but the predictor weighted by scalars can obviously reduce the computational burden, and provides a fast real time information fusion estimation algorithm.
Keywords:Multisensor information fusion   Linear minimum variance fusion criterion   Weighted fusion   Lyapunov equation   Distributed fusion Kalman predictor
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号