首页 | 本学科首页   官方微博 | 高级检索  
     


The fracture characteristics of Al-9Ti/SiC p metal matrix composites
Authors:T. D. Bayha  R. J. Kilmer  F. E. Wawner
Affiliation:(1) Lockheed Aeronautical Systems Company, 30063 Marietta, GA;(2) Department of Materials Science, University of Virginia, 22903 Charlottesville, VA
Abstract:A fracture mechanics approach was used to determine the plane strain fracture toughness (K IC) of a mechanically alloyed Al-9Ti 20 vol pct cobalt sol-gel-coated SiC particle-reinforced composite. Processing defects consisting of clumped SiC particulate, bonded by the sol-gel, initiated failure in tensile tests. The defects were measured and the fracture toughness was calculated using the Irwin relation. The value ofK IC for the as-received material was determined to be equal to 4.7 MPa·m1/2 at room temperature. Annealing the material for 120 hours and 400 hours at 500 °C increased the fracture toughness. This can be attributed to coarsening of an Al3Ti strengthening phase. Tensile tests conducted at 200 °C show thatK IC decreases at that temperature for each annealing condition. The sensitivity to the presence of the defects is greatest for samples annealed at 500 °C for 120 hours. The effect of the defects on the failure mechanism of the composite material as a function of temperature was determined. At room temperature, the Co/SiC processing defects provide low-energy paths for crack propagation; at 500 °C, the defects serve as void nucleation sites.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号