首页 | 本学科首页   官方微博 | 高级检索  
     


Fully Nonhydrostatic Modeling of Surface Waves
Authors:Hengliang Yuan  Chin H Wu
Affiliation:1Graduate Student, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706. E-mail: hyuan@cae.wisc.edu
2Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706. E-mail: chinwu@engr.wisc.edu
Abstract:A fully nonhydrostatic model is tested by simulating a range of surface-wave motions, including linear dispersive waves, nonlinear Stokes waves, wave propagation over bottom topographies, and wave–current interaction. The model uses an efficient implicit method to solve the unsteady, three-dimensional, Navier-Stokes equations and the fully nonlinear free-surface boundary conditions. A new top-layer pressure treatment is incorporated to fully include the nonhydrostatic pressure effect. The model results are verified against either analytical solutions or experimental data. It is found that the model using a small number of vertical layers is capable of accurately simulating both the free-surface elevation and vertical flow structure. By further examining the model’s performance of resolving wave dispersion and nonlinearity, the model’s efficiency and accuracy are demonstrated.
Keywords:Surface waves  Nonlinear response  Wave dispersion  Wave propagation  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号