Rugged gap reactor device for postcolumn fluorescence detection in capillary electrophoresis |
| |
Authors: | Wei H Li S F |
| |
Affiliation: | Department of Chemistry and Institute of Materials Research and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore. |
| |
Abstract: | ![]() In this paper, the construction and performance of a rugged device for postcolumn derivatization in capillary electrophoresis (CE) are described. The device was based on a gap design, and a gap with a very small distance (<3 μm, estimated under microscope) could be easily constructed without micromanipulation. Addition of derivatizing reagents into the reaction capillary was attributable to gravity flow. The concentration of derivatizing reagents can be controlled through manipulating the electroosmotic flow in the reaction capillary and the height of the liquid levels from the derivatizing reagents to the buffer reservoirs. The device has been applied in fluorescence detection of amino acids using a mixture of o-phthaldialdehyde/2-mercaptoethanol as derivatizing reagent. Theoretical plate numbers for 11 amino acids separated in a pH 9.5 borate buffer were obtained in the order of 40?000-250?000. The detection limit for glycine (S/N = 2) was found to be 6.7 × 10(-)(7) mol/L using a commercial HPLC fluorescence detector modified for CE. Free amino acids in a wine sample were also determined. Because the device is quite stable, we believe that it can be used routinely in analytical laboratories. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|