首页 | 本学科首页   官方微博 | 高级检索  
     

基于切削力信号的钻头磨损状态实时监测
引用本文:李鹏阳,杨明顺,袁启龙,郑建明,李言. 基于切削力信号的钻头磨损状态实时监测[J]. 工具技术, 2005, 39(8): 79-82
作者姓名:李鹏阳  杨明顺  袁启龙  郑建明  李言
作者单位:西安理工大学
基金项目:机械工业发展基金资助项目(项目编号:CF0013)
摘    要:
研究了钻削过程中刀具在线磨损状态特征信号的提取方法。以轴向力和扭矩为监测信号,在普通钻床上建立起相应的实时信号数据采集系统,通过对信号进行幅域和频域分析,提取了特征信号随刀具磨损量增加的变化规律,为实现机械加工过程刀具状态的智能识别提供了依据。试验结果表明,该方法具有较好的抗干扰能力和较高的识别精度。

关 键 词:特征信号  刀具磨损  切削力  幅域分析  频谱分析
收稿时间:2004-12-01
修稿时间:2004-12-01

Drill Wear On-line Monitoring by Using Cutting Force Signal
Li Pengyang, Yang Mingshun, Yuan Qilong ,et al. Drill Wear On-line Monitoring by Using Cutting Force Signal[J]. Tool Engineering(The Magazine for Cutting & Measuring Engineering), 2005, 39(8): 79-82
Authors:Li Pengyang   Yang Mingshun   Yuan Qilong   et al
Affiliation:Li Pengyang Yang Mingshun Yuan Qilong et al
Abstract:
The extracting method of on-line wear character signal of drilling tool is studied. The signal collecting system is set up on the drilling machine with axial and torque force as monitoring signals. Based on the time domain and frequency domain analysis of tool wear signals, the rule of character signal variation according to the increasing tool wear is generalized to be used to deal with the intelligent identification of the degree of tool wear on-line. The experimental result shows that the system has good antidisturbing capability and high identification accuracy.
Keywords:character signal   tool wear   cutting force   time domain analysis   frequency domain analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号