首页 | 本学科首页   官方微博 | 高级检索  
     

贴片电阻焊点内部空洞缺陷自适应检测
引用本文:蔡念, 肖盟, 肖盼, 周帅, 邱宝军, 王晗. 贴片电阻焊点内部空洞缺陷自适应检测[J]. 电子与信息学报, 2022, 44(5): 1617-1624. doi: 10.11999/JEIT211246
作者姓名:蔡念  肖盟  肖盼  周帅  邱宝军  王晗
作者单位:1.广东工业大学信息工程学院 广州 510006;;2.天津大学 天津 300072;;3.工业和信息化部电子第五研究所 广州 510006;;4.广东工业大学机电工程学院 广州 510006;;5.惠州市广工大物联网协同创新研究院有限公司 惠州 516025
基金项目:惠州市高校科研专项资金项目;广东省自然科学基金;国家自然科学基金
摘    要:贴片电阻在回流焊过程中,受工艺影响,焊点内部或多或少会存在空洞缺陷,空洞占比率过高会严重降低器件的可靠性。该文融合局部预拟合(LPF)活动轮廓模型和自适应圆形卷积核,提出一种贴片电阻焊点内部空洞缺陷自适应检测方法。首先,根据贴片电阻图像具有明暗两个明显区域的特点,通过求解区域平均灰度差异最大的优化问题将其自适应地分为较暗和较亮两个区域。然后,针对较暗区域中空洞与背景之间对比度低、空洞分布较稀疏、面积偏大等特点,采用局部预拟合活动轮廓模型进行空洞检测;针对较亮区域中空洞与背景之间差异明显、空洞分布密集、面积偏小等特点,提出一种自适应圆形卷积核检测空洞。最后,采用形状因子和平均灰度策略剔除误检测,实现贴片电阻焊点内部空洞精细检测。实验结果表明,该文算法相较于其他检测算法性能有明显的提升,平均Dice系数高达0.8846。

关 键 词:空洞检测   贴片电阻   局部预拟合活动轮廓模型   自适应圆形卷积核   平均灰度策略
收稿时间:2021-11-10
修稿时间:2022-01-09

Adaptive Inspection for Void Defects Inside Solder Joints of Chip Resistors
CAI Nian, XIAO Meng, XIAO Pan, ZHOU Shuai, QIU Baojun, WANG Han. Adaptive Inspection for Void Defects Inside Solder Joints of Chip Resistors[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1617-1624. doi: 10.11999/JEIT211246
Authors:CAI Nian  XIAO Meng  XIAO Pan  ZHOU Shuai  QIU Baojun  WANG Han
Affiliation:1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;;2. Tianjin University, Tianjin 300072, China;;3. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510006, China;;4. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;;5. Huizhou Guangdong University of Technology IoT Cooperative Innovation Institute Co., Ltd., Huizhou 516025, China
Abstract:In the process of reflow soldering, void defects inevitably emerge inside solder joints of chip resistors, which will influence reliability of the device. In this paper, an adaptive inspection method for void defects inside solder joints of chip resistors is proposed by combining a Local Pre-Fitted (LPF) active contour model and circular convolutions with adaptive kernels. First, since the image of chip resistor has two distinct regions, dark and bright regions are adaptively separated from the image after solving the optimization problem with the largest difference between the average gray level values of the two regions. Then, considering low contrast between voids and the image background, sparse distribution and large areas of voids in the dark region, LPF active contour model is used to inspect voids. As for the obvious difference between voids and the image background, dense distribution and small areas of voids in the bright region, circular convolutions with adaptive kernels are proposed to inspect voids. Finally, false detection can be eliminated by the shape factor and an average gray strategy to realize accurate void inspection. Experimental results show that the proposed method is superior to other inspection methods with an average Dice coefficient of 0.8846.
Keywords:Void detection  Chip resistor  Local Pre-Fitted (LPF) model  Circular convolution with adaptive kernel  Average-gray strategy
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号