Eliminating redundancy and irrelevance using a new MLP-based feature selection method |
| |
Authors: | E. Gasca R. Alonso |
| |
Affiliation: | a Lab. Reconocimiento de Patrones, Instituto Tecnológico de Toluca, Av. Tecnológico s/n, 52140 Metepec, Edomex, México b Dept. Llenguatges i Sistemes Informàtics, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló de la Plana, Spain |
| |
Abstract: | ![]() This paper presents a novel feature selection method based on the use of a multilayer perceptron (MLP). The algorithm identifies a subset of relevant, non-redundant attributes for supervised pattern classification by estimating the relative contribution of the input units (those representing the attributes) to the output neurons (those corresponding to the problem classes). The experimental results suggest that the proposed method works well on a variety of real-world domains. |
| |
Keywords: | Feature selection Multilayer perceptron Relative contribution |
本文献已被 ScienceDirect 等数据库收录! |
|