首页 | 本学科首页   官方微博 | 高级检索  
     


Eliminating redundancy and irrelevance using a new MLP-based feature selection method
Authors:E. Gasca  R. Alonso
Affiliation:a Lab. Reconocimiento de Patrones, Instituto Tecnológico de Toluca, Av. Tecnológico s/n, 52140 Metepec, Edomex, México
b Dept. Llenguatges i Sistemes Informàtics, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Abstract:
This paper presents a novel feature selection method based on the use of a multilayer perceptron (MLP). The algorithm identifies a subset of relevant, non-redundant attributes for supervised pattern classification by estimating the relative contribution of the input units (those representing the attributes) to the output neurons (those corresponding to the problem classes). The experimental results suggest that the proposed method works well on a variety of real-world domains.
Keywords:Feature selection   Multilayer perceptron   Relative contribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号