首页 | 本学科首页   官方微博 | 高级检索  
     


Robustness of radial basis functions
Authors:Ralf   Ulrich   
Affiliation:aHeinz Nixdorf Institute, System and Circuit Technology, University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany
Abstract:Neural networks are intended to be used in future nanoelectronic technology since these architectures seem to be robust to malfunctioning elements and noise in its inputs and parameters. In this work, the robustness of radial basis function networks is analyzed in order to operate in noisy and unreliable environment. Furthermore, upper bounds on the mean square error under noise contaminated parameters and inputs are determined if the network parameters are constrained. To achieve robuster neural network architectures fundamental methods are introduced to identify sensitive parameters and neurons.
Keywords:Radial basis function   Robustness   Equicontinuity   Sensitivity analysis   Nanoelectronics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号