首页 | 本学科首页   官方微博 | 高级检索  
     

高维数据固有维数的自适应极大似然估计
引用本文:谷瑞军,须文波,刘军伟,姚娟. 高维数据固有维数的自适应极大似然估计[J]. 计算机应用, 2008, 28(8): 2088-2090
作者姓名:谷瑞军  须文波  刘军伟  姚娟
作者单位:南京审计学院,信息科学学院,南京,211815;江南大学,信息工程学院,江苏,无锡,214112;江南大学,信息工程学院,江苏,无锡,214112;无锡科技职业学院,软件与服务外包学院,江苏,无锡,214031;南京审计学院,信息科学学院,南京,211815
基金项目:江苏省教育厅哲学社会科学基金指导项目 , 南京审计学院校级科研项目
摘    要:
如何确定高维数据的固有维数是降维成功与否的关键。基于极大似然估计(MLE)的维数估计方法是一种新近出现的方法,实现简单,选择合适的近邻能取得不错的结果。但当近邻数过小或过大时,均有比较明显的偏差。其根本原因是没有考虑每个点对固有维数的不同贡献。在充分考虑数据集的分布信息之后,提出了一种改进的MLE——自适应极大似然估计(AMLE)。实验表明,无论在合成数据集还是真实数据集上,AMLE较MLE在估计准确度上均有很大的提高,对近邻数的变化也不甚敏感。

关 键 词:固有维数估计  极大似然估计  降维
收稿时间:2008-02-27
修稿时间:2008-05-22

Intrinsic dimension estimation of high-dimensional data based on adaptive maximum likelihood
GU Rui-jun,XU Wen-bo,LIU Jun-wei,YAO Juan. Intrinsic dimension estimation of high-dimensional data based on adaptive maximum likelihood[J]. Journal of Computer Applications, 2008, 28(8): 2088-2090
Authors:GU Rui-jun  XU Wen-bo  LIU Jun-wei  YAO Juan
Affiliation:GU Rui-jun1,2,XU Wen-bo2,LIU Jun-wei3,YAO Juan1(1. School of Information , Science,Nanjing Audit University,Nanjing Jiangsu 211815,China,2. School of Information Technology,Jiangnan University,Wuxi Jiangsu 214112,3. Software , Service Outsouring College,Wuxi Professional College of Science , Technology,Wuxi Jiangsu 214031,China)
Abstract:
How to estimate the dimension of a dataset is very important to dimension reduction. Maximum likelihood estimation based method is a novel dimension estimation method, which is simple and performs well when appropriate neighbors are selected. But it is very sensitive to the neighbor number by reason of ignoring the distribution difference of each point. An improved maximum likelihood estimation method named AMLE was proposed in this paper. Considering the distribution of a dataset, AMLE adjusts the contribution of each point to the estimator by designing a weight function. By applying it to a number of simulated and real datasets, experimental results show that it performes better than MLE and other methods.
Keywords:Intrinsic dimension estimation  Maximum likelihood estimation  Dimension reduction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号