首页 | 本学科首页   官方微博 | 高级检索  
     

基于模型不确定逼近的RBF网络机器人自适应控制
引用本文:陈龙宪. 基于模型不确定逼近的RBF网络机器人自适应控制[J]. 电子设计工程, 2012, 20(20): 80-83. DOI: 10.3969/j.issn.1674-6236.2012.20.029
作者姓名:陈龙宪
作者单位:长安大学电子与控制工程学院,陕西西安,710064
摘    要:利用RBF网络能以任意精度逼近任意的连续函数的特点,设计一种基于模型不确定逼近RBF网络机器人的自适应控制器。采用RBF网络可以大大加快学习速度,并避免局部极小问题,适合于实时控制要求。仿真结果表明,该控制算法具有较强的鲁棒性和较好的跟踪性。

关 键 词:机器人  RBF网络  自适应控制  鲁棒性

Adaptive control of robot based on RBF network with uncertainty of model approximation
CHEN Long-xian. Adaptive control of robot based on RBF network with uncertainty of model approximation[J]. Electronic Design Engineering, 2012, 20(20): 80-83. DOI: 10.3969/j.issn.1674-6236.2012.20.029
Authors:CHEN Long-xian
Affiliation:CHEN Long-xian(School of Electronic & Control Engineering,Chang'an University,Xi'an 710064,China)
Abstract:As the RBF network can approach any model with any precision,we put forward an adaptive Controller of Robot Based on RBF Network with uncertainty of model approximation.The RBF network can greatly accelerate the learning speed and avoid local minima problems,suitable for real-time control requirements.The simulation results show that the control algorithm has strong robustness and superior tracking capability.
Keywords:robot  radial basis function network  adaptive control  robustness
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号