首页 | 本学科首页   官方微博 | 高级检索  
     

复杂样本分类系统的FAGABPNN法
引用本文:黄丽 唐万梅. 复杂样本分类系统的FAGABPNN法[J]. 重庆理工大学学报(自然科学版), 2007, 21(15): 122-125
作者姓名:黄丽 唐万梅
作者单位:重庆师范大学数学与计算机科学学院,重庆400047
基金项目:重庆市教委资助项目(KJ060818,KJ060804);重庆师范大学校级科学研究项目(06XLB023).
摘    要:针对复杂样本的模式分类问题,提出了有效的因子分析法(FA)、遗传算法(GA)和BP神经网络(BPNN)相结合的FAGABPNN分类方法,基本思想是:首先利用因子分析法对输入样本降维,然后利用遗传算法和BP神经网络相结合的方法对系统进行建模.仿真结果表明,该系统为给复杂样本的分类提供了一条有效的途径.

关 键 词:因子分析 遗传算法 BP神经网络 分类
文章编号:1671-0924(2007)08-0122-04
收稿时间:2007-06-24

FAGABPNN Method Based on Complex Samples Classification System
HUANG Li, TANG Wan-mei. FAGABPNN Method Based on Complex Samples Classification System[J]. Journal of Chongqing University of Technology(Natural Science), 2007, 21(15): 122-125
Authors:HUANG Li   TANG Wan-mei
Affiliation:College of Mathematics and Computer Sciences, Chongqing Nomai University, Chongqing 400047, China
Abstract:A complex samples classification system with FAGABPNN was proposed in this paper. To realize the classification system, firstly the dimension of input samples was reduced by Factor Analysis, and then an accurate model was built with Genetic Algorithm and BP Algorithm. Experiment results showed the system was feasible and valid, a valid method for complex samples classification was given.
Keywords:factor analysis   genetic algorithm   BP neural network   classification
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号